Рабочая программа курса Современная физика. Проблемы и перспективы (ДЛЯ 10 КЛАССА) (1 час в неделю, 34 часа в год)

Планируемые результаты изучения учебного предмета

Название	Предметные резуль	•	ия учеоного предмета Метапредметные	Личностные
раздела	ученик научится	ученик получит	результаты	результаты
I	y formik may milest	возможность	F	r - J
		научиться		
Физика как	-объяснять роль	-работать со	Регулятивные	_
лидер	физики в	средствами	-самостоятельно	гражданственнос
естествознан	формировании	информации, в	определять цели,	ть, гражданская
ия и	научного	том числе	задавать параметры	позиция
фундамент	мировоз-	компьютерным	и критерии, по	активного и
выживания	зрения;	И	которым можно	ответственного
человечеств	— объяснять	(уметь искать и	определить, что цель	члена
a.	вклад физических	отбирать	достигнута;	российского
и. Нобелевские	теорий в	информацию,с	-оценивать	общества,;
	формирование со-	истематизирова	возможные	-признание
лауреаты в области	временной	ть и коррек-	последствия	неотчуждаемост
физики	естественно-	тировать её,		
физики Диалог	научной картины	составлять	достижения поставленной цели в	и основных прав и свобод
1	•			
физики с природой:	мира;	рефераты); - готовить	деятельности, собственной жизни и	человека,
1	— понимать	сообщения и		правовая и
основные	единство живой и неживой	,	жизни окружающих людей, основываясь	политическая
этапы и		доклады и	· ·	грамотность;
современная	природы, родство	выступать с	на соображениях	-мировоззрение,
методология	живых орга-	ними;	этики и морали;	соответствующе
познания.	низмов;	-участвовать в	-ставить и	е современному
Oowonyyya	— понимать роль	дискуссиях;	формулировать	уровню развития
Основные	физики в целом в	- оформлять	собственные задачи	науки и
физические	жизнедеятельност	сообщения и	в образовательной	общественной
проблемы	и человека	доклады в	деятельности и	практики,
XXI века.	в XXI в.;	письменном и	жизненных	основанное на
Макрофизик		электронном	ситуациях; Познавательные:	диалоге культур,
a.		виде;		а также
		- подбирать к	-искать и находить	
0		докладам,	обобщенные	общественного
Основные		сообщениям,	способы решения	сознания,
физические		рефератам	задач, в том числе,	осознание своего
проблемы		иллюстративны	осуществлять	места в
XXI века.		й мате-	развернутый	поликультурном
вопросы.		риал и	информационный	мире.
Астрофизик		корректировать	поиск и ставить на	
a		его;	его основе новые	
		использовать	(учебные и	
		приобретённые	познавательные)	
		знания и	задачи;	
		умения в	-критически	
		практической	оценивать и	
		дея-	интерпретировать	

тельности и	информацию с	
повседневной	разных позиций,	
жизни для	распознавать и	
создания	фиксировать	
коммуникативн	противоречия в	
ой сре-	информационных	
ды в диалогах и	источниках;	
общении;	-осуществлять	
-использовать	деловую	
приобретённые	коммуникацию;	
знания и	-развернуто, логично	
умения в	и точно излагать	
практической	свою точку зрения	
деятельности и		
повседневной		
жизни для		
построения		
гипотезы по		
созданию		
физических		
моделей;		
-использовать		
приобретённые		
знания и		
умения в		
практической		
деятельности и		
повседневной		
жизни для		
нахождения		
практического		
применения		
основных		
явлений		
физики в		
жизни		
человека.		

Содержание курса

Название раздела	Краткое содержание	Количество			
1	,,1	часов			
Физика как лидер	Физик в противостоянии лженауке, мифам	8			
естествознания и	массового сознания. Достижения физики XX				
фундамент выживания	столетия через призму нобелевских премий.				
человечества. Нобелевские	Конрад Рентген – первый нобелевский				
лауреаты в области	лауреат по физике (1901). Жан Батист				
физики Диалог физики с	Перрен: борьба за атомистические				
природой: основные этапы	представления. 1905 год – фантастический				
и современная	год в истории развития теоретической				
методология познания.	физики. Альберт Эйнштейн. Нобелевские				
методологии познании	лауреаты в области физики XX и начала XXI				
	века. Развитие науки как смена парадигм. От				
	древности до классической науки. Системная				
	парадигма и переход к постнеоклассической				
	науке. Предшественники и слагаемые				
	нелинейной физики. Дискуссия о еè				
	содержании, возможностях и границах.				
	Ситуация в науке к концу XX века. Роль				
	нелинейной физики в развитии				
	постнеоклассической науки. Взаимодействие				
	новых синтезирующих наук сегодня.				
	Современная физика и проблема преодоления				
	разрыва между «науками о природе» и				
	унауками о духе».				
Основные физические	Управляемая термоядерная реакция	9			
проблемы XXI века.	Сверхпроводимость при высокой и				
Макрофизика.	комнатной температурах Металлический				
такрофизика.	водород. Другие экзотические субстанции.				
	Двумерные электронные жидкости				
	(аномальный эффект Холла и некоторые				
	другие эффекты). Некоторые проблемы				
	физики твердого тела (гетероструктуры в				
	полупроводниках, квантовые ямы и точки,				
	зарядовые и спиновые волны, мезоскопия и				
	прочее). Фазовые переходы второго рода и				
	связанные с ними эффекты (охлаждение до				
	сверхнизких температур, Бозе-				
	Эйнштейновский конденсат в газах и др.).				
	Поверхностная физика. Кластеры. Жидкие				
	кристаллы. Ферроэлектрики. Ферротороики				
	(Ferrotoroic). Фуллерены. Нанотрубки.				
	Свойства вещества в сверхсильных				
	магнитных полях. Нелинейная физика.				
	Турбулентность, солитоны, хаос, странные				
	аттракторы. Разеры (Rasers), гразеры (Grasers)				
	- лазеры на рентгеновских и гамма-лучах.				
	Сверхтяжелые элементы. Экзотические ядра.				
Основные физические	Спектр масс элементарных частиц. Кварки и	8			
проблемы XXI века.	глюоны. Квантовая хромодинамика. Кварк-				
	2				

вопросы. Микрофизика.	глюонная плазма. Единая теория слабых и	
	электромагнитных взаимодействий.	
	Стандартная модель. Масса нейтрино.	
	Магнитные монополи. Фундаментальная	
	длина. Взаимодействие частиц при высоких и	
	сверхвысоких энергиях. Нелинейные	
	феномены в вакууме и сверхсильных	
	электрических полях. Несохранение СР-	
	инвариантности. Струны. М-теория.	
Основные физические	Экспериментальная проверка общей теории	9
проблемы XXI века.	относительности. Гравитационные волны и их	
вопросы. Астрофизика	детектирование. Космологические проблемы.	
	Инфляция. Л-член. Связь космологии и	
	физики высоких энергий. Нейтронные звезды	
	и пульсары. Сверхновые. Черные дыры.	
	Космические струны. Квазары и ядра	
	галактик. Образование галактик. Проблема	
	темной материи (скрытой массы) и ее	
	детектирование. Происхождение космических	
	лучей со сверхвысокой энергией. Гамма-	
	всплески (GRB). Гиперновые Нейтринная	
	физика и астрономия. Нейтринные	
	осцилляции	